D⁰-D 0 mixing with the full CDF dataset Mark Mattson Wayne State University on behalf of the CDF Collaboration Joint Experimental-Theoretical Physics Seminar April 12, 2013 # Charm Mixing Overview (More extensive overview available on the PDG web page) ### Neutral Meson Mixing - Particle antiparticle oscillation - Production eigenstates ≠ mass eigenstates $$\left|D^{0}\right\rangle = \frac{1}{\sqrt{2}}\left(\left|D_{1}\right\rangle + \left|D_{2}\right\rangle\right) \qquad \left|\overline{D}^{0}\right\rangle = \frac{1}{\sqrt{2}}\left(\left|D_{1}\right\rangle - \left|D_{2}\right\rangle\right)$$ Assuming no CP violation Time evolution of mass eigenstates $$i\frac{\partial}{\partial t}|D_{1,2}(t)\rangle = \left(M - \frac{i}{2}\Gamma\right)|D_{1,2}(t)\rangle$$ $$|D_{1,2}(t)\rangle = |D_{1,2}(0)\rangle e^{-t(\frac{1}{2}\Gamma_{1,2} + iM_{1,2})}$$ ### Meson Mixing | Mixing | X | y | |----------------------|-------------|--------| | $\mathrm{B_{s}^{0}}$ | 26.6 | 0.092 | | \mathbf{B}^0 | 0.77 | 0.009 | | \mathbf{K}^0 | 0.474 0.997 | | | \mathbf{D}_0 | 0.0065 | 0.0073 | - Charm mixing is small - Despite D mesons being seen before B mesons, charm mixing was only observed recently - kaon mixing seen 1962 - beauty mixing seen 1987 - B_s oscillations observed 2006 - first evidence of charm mixing was in 2007 - first single measurement observation of charm published March 2013 (LHCb) # Calculating Mixing - Kaon and Beauty mixing due to contributions from the box diagrams - superheavy quarks (i.e. top) destroying GIM cancellations - For charm, those contributions are small - $O(10^{-5})$ or less - down-type quarks (no top) # Calculating Mixing - Long-distance contributions are important for charm mixing - $O(10^{-2})$ or less - D^0 and \overline{D}^0 can decay to common hadronic states like KK or $\pi\pi$ - harder to get theory predictions - non-perturbative, model dependent - only mixing involving up-type quarks - CP violation studies (New Physics) - as results get more precise, can reduce the number of viable theory models - also relate mixing to rare decays (like $D^0 \rightarrow \mu\mu$) # Charm Mix
Measurements - Heavy Flavor Averaging Group has combined all D⁰ decay modes and experimental results - semi-leptonic decays, $K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^+\pi^-$, lifetime differences (KK, $\pi\pi$), $K^0\pi^-\pi^+$, $K^0K^-K^+$ - The no-mixing hypothesis excluded at 10.2 σ significance - Only a few measurements have exceeded 3σ # Charm Mixing with $D^* \rightarrow \pi_s D^0, D^0 \rightarrow K\pi$ # $D^*, D^0, K\pi$ - For this analysis, need: - Proper decay time for time evolution - Identify charm flavor at production - Identify flavor at decay - $D^* \rightarrow \pi_s D^0$, $D^0 \rightarrow K\pi$ - Measure decay length from the beamline "s" stands for softer momentum Requiring a D* also improves signal:background $$\begin{array}{ccc} & \pi_s^+ \longmapsto D^0 \\ & \pi_s^- \longmapsto \bar{D^0} \end{array}$$ $$\pi_s \longrightarrow D^0$$ $K^+\pi^-$ or $K^-\pi^+$ # Lingo: "Right-sign" - "Right-Sign" events have pions with the same charge - Cabibbo favored (CF) D⁰ decay # Lingo: "Wrong-sign" - "Wrong-Sign" events have pions with opposite charge - D*+ $\rightarrow \pi_S^+ \pi^- K^+$ - Doubly Cabibbo suppressed (DCS) decays - Mixing: $D^0 \Leftrightarrow \overline{D}^0$, followed by CF decay - RS:WS roughly 300:1 ### Decay Rate Ratio • With x, $y \ll 1$ and assuming no CPV, the time-dependent ratio of WS to RS events can be approximated by $$R(t/\tau) = R_D + (t/\tau)\sqrt{R_D}y' + (t/\tau)^2 \frac{x'^2 + y'^2}{4}$$ DCS to CF ratio Interference Mixing (note: $R_D \sim O(0.3\%)$) Formula uses x', y' instead of x, y $$x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}$$ $$y' = y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$$ - Strong phase difference $\delta_{K\pi}$ between CF and DCS amplitudes - $x^2 + y^2 = x'^2 + y'$ ### Misc Notes - Including charge conjugate decays (D*+ and D*- combined) - simplifies systematic errors in the WS/RS ratio - Events divided into 20 bins of decay time, ranging from 0.75-10 D⁰ lifetimes - Bin width gets wider as the decay time increases - Event-weighted mean time for each bin, determined from RS D* - Analysis precision is limited by the number of WS D* ### **CDF Event Selection** ### CDF II Detector - Data collected from Feb 2002 -Sep 2011 - $\int L \approx 9.6 \text{ fb}^{-1} \text{ at}$ $\sqrt{s} = 1.96 \text{ TeV}$ - Looking at fully reconstructed D⁰ decaying to charged K and π - silicon vertex detector surrounded by wire drift chamber (COT) in 1.4T solenoid (central tracking) - Particle identification using energy loss (dE/dX) in the COT # Hadronic Trigger - CDF used a dead-timeless, high rate trigger system - This analysis uses the hadronic trigger that requires two oppositely charged tracks in COT+SVX from a displaced vertex - Optimized for B decays, but has good charm acceptance - The trigger tracks are used to form the $D^0 \rightarrow K\pi$ candidates - Additional tracks found off-line to form $D^{*+} \rightarrow \pi_s^+ D^0$ candidate # Candidate Composition - D* produced at the beamline interaction <-- SIGNAL - D* from secondary decays, like B mesons - Will have different impact parameter (d₀) from signal - fake D* candidates: D⁰ + random track - Different ΔM [= $M(\pi_s K \pi)$ $M(K \pi)$ $M(\pi_s K \pi)$] from real D* - D⁰-> $K\pi$ incorrectly reconstructed as πK - particle identification and $K\pi$ mass distribution different from D^0 - Other D⁰ backgrounds - D^0 -> KK, D^0 -> $\pi\pi$, partially reconstructed charm, combinatoric background - smooth $K\pi$ distribution (non-peaking) ### Basic Selection Cuts - The detached vertex trigger, by itself, gives us a clean CF D⁰ signal - Basic selections: - $\Delta M < 30 \text{ MeV/c}^2$ - Fewer fake D* candidates - D^0 impact parameter $d0 < 60 \mu m$ - Reduce D* from secondaries - π_s track must pass near beamline - Reduce obvious fake combinations - $\pi_{\rm s} \ 0.4 < {\rm pT} < 2.0 \ {\rm GeV/c^2}$ - reliable tracking, below trigger threshold - after all selections (including following slides), only include events with a single D* candidate >8 x 10⁶ time integrated RS D⁰ (after all selections) M. Mattson ### RS and WS Data - D⁰ candidates start with both $K\pi$ and πK particle assignments possible - limit mass range to $1.8 < m_{K\pi} < 1.92 \text{ GeV/c}^2$ - Excludes $D^0 \to KK$, $\pi\pi$ ### RS and WS Data - Problem: Huge number of CF D* (RS) events can mask WS signal - Swapping the $K\pi$ particle assignments causes the distribution to get x10 wider than the correct assignments ### dE/dX Selection - Correct particle assignment for a track results in the dE/dX part. id. variable having a Gaussian distribution with mean=0, width ~1 - COT pulse height minus prediction for that type of particle, divided by error - Incorrect assignment shifts the distribution away from zero - Use both track part. id. at same time - Get "displacement" from zero, - Compare $K\pi$ and πK track hypotheses, and keep the one closer to zero. #### correct particle assignment #### particles swapped ### VVS, RS Selection - When projecting the WS mass, exclude candidates consistent with being a RS D⁰ - RS mass $|m_{K\pi} m_{D0}| < 20 \text{ MeV}$ - Reduces signal by 1/3rd, but only a few % of background survives - Exclude candidates consistent with WS D⁰ when projecting the RS mass # Mis-Assigned Clean-up - Mass and PID cuts greatly clean up the CF D* background in the WS mass plots - Sig/back improved ~120 - Blue events are consistent with CF (RS) D* decays - Red events are WS D*, and background from fake D* (D0 + random track) - Green events are background #### Before selections #### After selections ### Fitting Methods ### Analysis Overview - Backgrounds to be accounted for - D* from B decays (not produced at beamline) - Make a correction in ratio R(t) to correct for the incorrect decay time - fake D* candidates - Fit ΔM plots to distinguish from real D* - fake $D^0 \rightarrow K\pi$ candidates - Fit $K\pi$ mass plots to distinguish from real D^0 - Start at the bottom and work towards the top - Each successive step has fewer backgrounds to worry about ### Kπ Mass Fits - Only correctly reconstructed D^0 -> $K\pi$ forms a peak in the $K\pi$ mass distribution - Backgrounds can be fit with an almost flat curve - 2400 mass fits - data divided into: RS, WS; 20 time bins; 60 bins of ΔM - Same D⁰ signal shape used for RS and WS - Parameters for background are independent for all fits WS K π mass, time and Δ M integrated (for illustration purposes) ### Mass Diff. Yields - Use results of the $K\pi$ fits to get D^0 versus ΔM distribution - each point --> number of D⁰ from a K π fit - error bars are the uncertainty on # of D⁰ from $K\pi$ fit D⁰ WS - time slice#6 - Δm range 2.0000 - 2.5000 ### ΔM fits - 40 fits for D* yield - RS, WS; 20 time bins - RS and WS D* have the same signal shapes - Independent parameters for signal and background amplitudes for all time bins - Only events in these plots are D* and (D⁰ + random track) ### WS/RS Ratio - Use the 20 RS D* yield and 20 WS D* yield plots to get the WS/RS ratio in our time bins - Some of these D* were produced at the beamline - Some of these D* were not produced at the beamline - Decay time measured from the beamline will be incorrect - Want to correct for the effect of these events on the WS/RS ratio # Secondary D* - D* produced from B-decays will have the wrong proper decay time - decay length is measured from the primary vertex to the D⁰ vertex - Since the B lifetime to D lifetime is ~4:1, most of these background D* will be short decay-time D⁰ shifted to longer analysis time bins - Extrapolate the D⁰ towards the primary vertex - d₀: impact parameter - D* produced at a secondary vertex will have a larger d₀ value D* produced at the beamline $33 \mu m$ beam spot size D* from B decay Decay length from beamline is longer than the D⁰ decay length ### Impact Parameter - D* produced at the primary vertex have a narrow, timeindependent impact parameter (d₀) distribution - confirmed with data and MC - D* from B decays have a wider, time-dependent distribution - width increases with decay time - fit distribution using RS signal Time-integrated RS distribution ### Impact Parameter - For each analysis time bin, fit the prompt and non-prompt distributions - prompt-shape: double Gaussian - non-prompt: double Gaussian, each time bin is independent of the others - Use these fits to determine $f_B(t_i)$, the fraction of RS D* (with d_0 < 60 µm) that come from B-decays - Fit with 4th-order polynomial (empirical) ### Secondary VVS/RS Ratio $$R_B(t_i) = \frac{\sum_{j=1}^{M} \tilde{h}_{ij} R(t'_j)}{\sum_{j=1}^{M} \tilde{h}_{ij}}$$ - Use MC simulation to get the WS/RS ratio R_B - For each analysis time bin (t_i), get the distribution h_{ij} of D⁰ decay times, if we knew the B to the D^0 decay time (t'_i) - Use the predicted ratio formula R(t), but with the "correct" time (t'i) for this type of background $$R(t/\tau) = R_D + (t/\tau)\sqrt{R_D}y' + (t/\tau)^2 \frac{x'^2 + y'^2}{4}$$ ### WS/RS Fit χ² Function Instead of comparing the data points directly to the predicted ratio formula... $$\chi^{2} = \sum_{i=1}^{20} \frac{1}{\sigma_{i}^{2}} \left(R(t_{i}) - r_{i} \right)^{2} \qquad R(t) = R_{D} + (\Gamma t) \sqrt{R_{D}} y' + (\Gamma t)^{2} \frac{x'^{2} + y'^{2}}{4}$$... use the formula that includes D* background from secondary decays. ratio prediction: includes contribution from "beamline" and "B decay" D* term for uncertainty on the MC time distribution $$\chi^2 = \sum_{i=1}^{20} \frac{1}{\sigma_i^2} \left(\left(1 - f_B(t_i) \right) R(t_i) + f_B(t_i) R_B(t_i) - r_i \right)^2 + C(f_B) + C(h_{ij})$$ term for the uncertainty on the secondary fractions f_B ### Systematic Studies - The uncertainties stated includes the errors returned by the mass fits and uncertainties on the fractions f_B and the simulation time distributions. - Investigated possible effects that could bias the result - Variation of D⁰ signal shape - D* signal shape - partially reconstructed charm background in $K\pi$ fits - D* background shape - impact parameter non-prompt shape - simulation time scale - detector track reconstruction asymmetries - The systematic uncertainties were found to be small relative to the statistical errors from data - For many of these, there is a common effect on the WS D* and RS D* fits, and the effect cancels in the WS/RS ratio ### Ratio Result - Dashed line is the fit assuming no-mixing (no time dependence) - Red line is the fit including the contribution D* from secondary decays - Blue is the projection of the parameters, if there were no D* from B-decays | Fit Type | χ^2 /ndof | Parameter | Fit Value (10 ⁻³) | |-----------|----------------|------------------|-------------------------------| | | | R_{D} | 3.51 ± 0.35 | | Mixing | 16.91/17 | y' | 4.3 ± 4.3 | | | | x'2 | 0.08 ± 0.18 | | No-mixing | 58.75/19 | R_B | 4.30 ± 0.06 | M. Mattson ### Probability Contours - Bayesian probability intervals equivalent - to 1, 3, and 5 σ - likelihood $\sim \exp(-\chi^2/2)$ - solid point = best fit - cross = no-mixing $(y'=x'^2=0)$ - x' is a real number, so fits with $x'^2 < 0$ are unphysical - Bayesian probability contour that excludes nomixing point is equivalent to 6.1σ # No-mixing Significance - Alternative checks of the significance - All resulted in exclusion at 6.1σ significance - Bayesian probability restricted to $x'^2 \ge 0$ - Probability for $-2\Delta \log(L) = 41.8$, between best fit and no-mixing point, assuming χ^2 distribution with 2 d.o.f. - p-value (frequentist): Number of toy simulations with $\Delta \chi^2 \ge 41.8$ ### Experiment Results | Experiment | R _D (x10-3) | y'
(x10-3) | x ² (x10-3) | Excl. No-Mix
Significance | R _B (x10-3) | |---------------------|------------------------|-----------------|------------------------|------------------------------|------------------------| | Belle (2006) | 3.64 ± 0.17 | 0.6 ± 4.0 | 0.18 ± 0.22 | 2.0 | 3.77 ± 0.09 | | BaBar (2007) | 3.03 ± 0.19 | 9.7 ± 5.4 | -0.22 ± 0.37 | 3.9 | 3.53 ± 0.09 | | LHCb | 3.52 ± 0.15 | 7.2 ± 2.4 | -0.09 ± 0.13 | 9.1 | 4.25 ± 0.04 | | CDF (9.6/fb) | 3.51 ± 0.35 | 4.27 ± 4.30 | 0.08 ± 0.18 | 6.1 | 4.30 ± 0.06 | - In this table, "R_B" (PDG notation) means the fit assuming no-mixing (or the time-integrated ratio). - "R_D" is the parameter for the mixing fit, for the ratio at t=0 # Mixing Comparisons - Difficult to get full contours from all experiments - As an approximation, make 1σ contours based on the fit parameters errors and y'-x'² correlations ### Conclusion - We measured charm mixing in the D^0 -> $K\pi$ channel using the full CDF data set - We confirm LHCb observation of charm mixing (from a single decay channel measurement) - CDF measurement contributes important statistical precision to mixing parameters - New physics may emerge from future precision measurements combined with advances in theory ### Backup - Prev Result | Experiment | R _D (x10-3) | y'
(x10-3) | x ² (x10-3) | Excl. No-Mix
Significance | R _B (x10-3) | |---------------------|------------------------|-----------------|------------------------|------------------------------|------------------------| | Belle (2006) | 3.64 ± 0.17 | 0.6 ± 4.0 | 0.18 ± 0.22 | 2.0 | 3.77 ± 0.09 | | BaBar (2007) | 3.03 ± 0.19 | 9.7 ± 5.4 | -0.22 ± 0.37 | 3.9 | 3.53 ± 0.09 | | CDF (1.5/fb) | 3.04 ± 0.55 | 8.5 ± 7.6 | -0.12 ± 0.35 | 3.8 | 4.15 ± 0.10 | | LHCb | 3.52 ± 0.15 | 7.2 ± 2.4 | -0.09 ± 0.13 | 9.1 | 4.25 ± 0.04 | | CDF (9.6/fb) | 3.51 ± 0.35 | 4.27 ± 4.30 | 0.08 ± 0.18 | 6.1 | 4.30 ± 0.06 | ### Backup - Prev Result